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1 Relativistic kinematics of the wave packet

We start with the basic wave equation (1) which is at the base of most of quantum
mechanics, including Heisenberg’s uncertainty principle, Schrdinger’s equation, The
relativistic Klein Gordon equation, et-cetera. The Energy is found to be dependent
on the phase change rate in time given by the frequency f:

E = hf (1)

The wave equation (2) for the momentum p follows automatically from the theory
of Special Relativity which will be shown. The momentum p is found to dependent
on the phase change rate over space resulting in the deBrogle matter wavelength λ:

p = h/λ (2)

The deBroglie wave-length is caused purely by the relativistic effect of non - simul-
taneity: the time-shift we see if we look at the particle from a reference frame in
which it is not at rest. The deBroglie wave-length is a relativistic effect even though
it occurs at speeds of centimeters per second. So equation (2) is not a separate law
but follows directly from (1).

2 The wave packet at rest

The wave function of a particle in its rest frame is represented by (3), where Qx is
a localized Quantum wave packet. E0 is the energy belonging to its rest mass m0.
The particle viewed from its rest-frame has an equal (complex) phase over all of
space: This means that a particle at rest has a deBroglie wavelength λ of ∞.

particle at rest: Ψ = Qx e−i2πft = Qx e−iE0t/~ (3)

The effect of the wave-packet function Qx is that the particle is localized. The
Fourier transform F{Qx} of Q will introduce extra spacial frequencies around the
central wavelength λ. For the next few sections we will work with pure frequencies.
We will include Q again at the section which discusses the group speed of the
deBroglie wave.
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3 The moving wave packet

The relativistic time shift seen from a reference frame other then the rest frame
produces different phase shifts in eiE0t/~ at different x locations which then manifest
them self as the deBroglie wave length, a complex phase changing over space with
a wave length λ.

moving particle: Ψ = ei2πx/λ e−i2πft = eipx/~− iEt/~ (4)

We can simply derive the formula above from (3) if we substitute t with t’ from the
Lorentz transformation:

t′ = γ
(
−vx

c2
+ t

)
(5)

e−E0t/~ = e−im0c
2t/~ ⇒ e−im0c

2 γ
(
−vx/c2 + t

)
/~ (6)

= eiγm0vx/~− iγm0c
2t/~ = eipx/~− iEt/~ (7)

Figure 1: The deBroglie wave as a result of non-simultaneity

With the relativistic momentum p = γm0v and the relativistic energy E = γm0c
2

we get our expression (4) for the moving particle. We have derived the wave behavior
of momentum from the wave behavior of energy. The image shows a particle at rest
with λ = ∞ (localized by the function Q) and a particle moving downwards with
an indication of the time bands in the rest frame of the particle

4 The > c phase speed of the deBroglie wave

The deBroglie wave length is inversely proportional to the speed and becomes in-
finite in the rest frame. This simply means that the phase is equal everywhere in
the restframe. The speed with which the phase ”moves” fλ in the rest frame thus
becomes infinite as well. The phase speed is the inverse of the material speed v.
The phase speed only equals the material speed in the limit of c:

deBroglie phase speed: vψ = fλ =
E

p
=

c2

v
(8)

This result, although correct and logical after the derivation of p = h/λ from E = hf
contradicts intuition. What is behind this is that we can not interprete the deBroglie
wave as a phenomena which propagates with a certain speed through a media which
is either at rest or has it’s own specific speed. This does not work. In the next section
however we’ll show how by a simple re-arrangement of equation (4) we get all the
physical behavior we want.
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5 The group speed of the deBroglie wave

We have shown that one doesn’t get logical physical behavior if one tries to interpret
a Quantum Mechanical wave as something which propagates trough a medium .
Well, this is hardly surprising from the viewpoint of Special Relativity.

We do get the expected physical behavior however if we assume that the wave
function itself moves with the physical speed v of the wave packet. That is, as far
as one can speak in terms of ’media’, one must assume that any ’medium’ moves
along with the wave packet at the same speed. One can not say that the wave
packet propagates through the ’media’ Now for the math we start with:

moving wave packet: Qx,t eipx/~ e−iEt/~ (9)

Which we have split into three parts. First we want to express the localized packet
Q more explicitly as a something which moves with a speed v and hence is Lorentz
contracted by a corresponding gamma. We do so by defining:

Qx,t = Q(γ(x− vt)) (10)

We now want to do the same for the second part of equation (9) which describes
the phase change over space. We want to make it move with a physical speed v
so we can view Q and the second term as a single combination which moves along
with speed v. We already have the gamma factor included since:

eipx/~ = eiγm0vx/~ (11)

(See equation (7), To make it physically moving at speed v we need to lend some
from the third term to obtain the −vt part of the factor (x− vt). To do so we split
the exponent of the third term as follows:

−iE t/~ = − iE t/~
(

v2

c2

)
− iE t/~

(
1− v2

c2

)
(12)

The first half we move to the space phase phase so we get:

eipx/~ e−iEt/~ ⇒ eim0vγ(x− vt)/~ e− im0c
2t/(~γ) (13)

With this we can write the re-arranged expression (9) for the moving wave packet:

Q(γ(x− vt)) eip0γ(x− vt)/~ e− iE0t/(~γ) (14)

= W (γ(x− vt)) e− iE0t/(~γ) (15)

Where W is the combined Lorentz contracted function moving with speed v. The
phase variation with time represented by the last factor is now to be understood as
taken over the actual trajectory over the wave packet. It correctly corresponds with
the time dilation, which is predicted by special relativity to be a factor γ slower as
for the particle at rest.

Both the Lorentz contraction (with factor gamma) and the phase variation with
x are the result of the non-simultaneity of Special Relativity. To see this we can
imagine that we instantaneously ”freeze” a bypassing traveler. Walking around him
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we can now see him ”hanging in the air”, indeed being contracted in the direction
in he was moving.

The traveler however will complain that his front was stopped first, before his back
was frozen, and argues that this is the reason of his compressed state. The same is
true for the phase. The phase of the traveler does not vary with x in his rest frame.
However since (seen from his rest frame) we froze his front first and his back later.
We end up with the phase variation over x given by the second part of equation
(14)

The remark made that we can not interpret the deBroglie wave as propagating
through a media and, as far as one can speak in terms of ’media’, one must assume
that any ’medium’ moves along with the wave packet at the same speed. This
condition is also a requirement for the stability of the wave packet.

By multiplying with Q we increase the spectrum around the central wavelength to
a non-zero width via its Fourier transform F{Qx}. The stability of the wave packet
requires that all frequencies move at the same speed. If this is not the case then
the wave packet would disperse in the direction of motion but remain constant in
the orthogonal directions. Such an asymmetric behavior dependent on ones choice
for the speed is in conflict with special relativity.

If one can speak of any propagation through a ’media’ at all then it only serves to
make the wave function coherent over space. It would then provide a mechanism
to make the phase equal over space as seen from its rest frame.

6 The relativistic rotation of the wave front

A remarkable amount of physics can be extracted from the simple rule that the wave
front is always at right angles with the physical velocity, regardless of the reference
frame. This gives us another means of determining the material speed.

Figure 2: The Rotation of the Wavefronts

The left half above above shows a fast particle chasing a slower particle with equal
mass. The fast particle has a shorter deBroglie wavelength. The phase speed of the
faster particle is slower ( as given by c2/v ) compared to the slower particle.

At the right half we see the same scene from a reference frame moving upwards. The
extra motion has a larger influence on the slower moving particle. Its relative motion
changes downwards more than the faster particle. As one can see, the combination
of Special Relativity and Quantum Mechanics makes sure that the wavefronts are
exactly at right angles with the physical speed, exactly as one would intuitively
expect.
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It is only Special Relativity which can rotate wavefronts, and it does so for both
light and matter waves. A Galilean transformation keeps the wavefronts always
directed in the same direction! The mechanism through which Special Relativity
manages this is again via the non-simultaneity of time.

Figure 3: The time zones of Special Relativity

The time in the moving frame has progressed further in the upper time bands and
less in the lower. Horizontally the phase has shifted further in the upper and less in
the lower bands. The result is that the wavefront becomes skewed. The wavefront
of the slower particle which has a higher phase speed (c2/v) becomes more skewed
and rotates further. Just as it should be to keep the wavefront at right angles with
physical speed.

So it’s Special Relativity which rotates the wavefront while it is the Quantum Me-
chanical deBroglie wave with its phase speed of c2/v which rotates the wavefront of
a slow particle more than that of a faster one. This mechanism works equally well
for light waves which represent the limit where: group-speed = phase-velocity = c.
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